首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11331篇
  免费   1123篇
  国内免费   513篇
  2024年   8篇
  2023年   249篇
  2022年   261篇
  2021年   612篇
  2020年   651篇
  2019年   797篇
  2018年   678篇
  2017年   403篇
  2016年   370篇
  2015年   595篇
  2014年   960篇
  2013年   954篇
  2012年   639篇
  2011年   747篇
  2010年   566篇
  2009年   616篇
  2008年   572篇
  2007年   556篇
  2006年   426篇
  2005年   376篇
  2004年   297篇
  2003年   227篇
  2002年   188篇
  2001年   125篇
  2000年   83篇
  1999年   73篇
  1998年   71篇
  1997年   59篇
  1996年   73篇
  1995年   65篇
  1994年   53篇
  1993年   63篇
  1992年   79篇
  1991年   63篇
  1990年   32篇
  1989年   31篇
  1988年   32篇
  1987年   46篇
  1986年   34篇
  1985年   32篇
  1984年   53篇
  1983年   27篇
  1982年   39篇
  1981年   19篇
  1980年   19篇
  1979年   12篇
  1978年   7篇
  1977年   4篇
  1974年   7篇
  1972年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Adiponectin (APN) is known to promote the osteogenic differentiation of human jaw bone marrow mesenchymal stem cells (h‐JBMMSCs). However, the underlying mechanism has not been fully elucidated. Previously, we showed that APN could promote h‐JBMMSC osteogenesis via APPL1‐p38 by up‐regulating osteogenesis‐related genes. Here, we aimed to determine whether APN could promote h‐JBMMSC chemotaxis through CXCL1/CXCL8. The CCK‐8, wound healing and transwell assays were used to evaluate the proliferation, migration and chemotaxis of h‐JBMMSCs with or without APN treatment. Chemotaxis‐related genes were screened using RNA‐seq, and the results were validated using real‐time PCR and ELISA. We also performed Western blot using the AMPK inhibitor, WZ4003, and the p38 MAPK inhibitor, SB203580, to identify the signalling pathway involved. We found that APN could promote h‐JBMMSC chemotaxis in the co‐culture transwell system. CXCL1 and CXCL8 were screened and confirmed as the up‐regulated target genes. The APN‐induced CXCL1/8 up‐regulation to promote chemotaxis could be blocked by CXCR2 inhibitor SB225002. Western blot revealed that the phosphorylation of AMPK and p38 MAPK increased in a time‐dependent manner with APN treatment. Additionally, WZ4003 and SB203580 could suppress the APN‐induced overexpression of CXCL1 and CXCL8. The results of the transwell chemotaxis assay also supported the above results. Our data suggest that APN can promote h‐JBMMSC chemotaxis by up‐regulating CXCL1 and CXCL8.  相似文献   
2.
Cardiac stem cells are described in a number of mammalian species including humans. Cardiac stem cell clusters consisting of both lineage-negative and partially committed cells are generally identified between contracting cardiac myocytes. In the present study, c-kit+, Sca+, and Isl1+ stem cells were revealed to be located inside the sarcoplasm of cardiac myocytes in myocardial cell cultures derived from newborn, 20-, and 40-day-old rats. Intracellularly localized cardiac stem cells had a coating or capsule with a few pores that opened into the host cell sarcoplasm. The similar structures were also identified in the suspension of freshly isolated myocardial cells (ex vivo) of 20- and 40-day-old rats. The results from this study provide direct evidence for the replicative division of encapsulated stem cells, followed by their partial cardiomyogenic differentiation. The latter is substantiated by the release of multiple transient amplifying cells following the capsule rupture. In conclusion, functional cardiac stem cells can reside not only exterior to but also within cardiomyocytes.  相似文献   
3.
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into different cell types. Owing to their immunosuppressive and anti-inflammatory properties, they are widely used in regenerative medicine, but they have a dual effect on cancer progression and exert both growth-stimulatory or -inhibitory effects on different cancer types. It has been proposed that these controversial effects of MSC in tumor microenvironment (TME) are mediated by their polarization to proinflammatory or anti-inflammatory phenotype. In addition, they can polarize the immune system cells that in turn influence tumor progression. One of the mechanisms involved in the TME communications is extracellular vesicles (EVs). MSCs, as one of cell populations in TME, produce a large amount of EVs that can influence tumor development. Similar to MSC, MSC-EVs can exert both anti- or protumorigenic effects. In the current study, we will investigate the current knowledge related to MSC role in cancer progression with a focus on the MSC-EV content in limiting tumor growth, angiogenesis, and metastasis. We suppose MSC-EVs can be used as safe vehicles for delivering antitumor agents to TME.  相似文献   
4.
《Developmental cell》2023,58(15):1383-1398.e6
  1. Download : Download high-res image (125KB)
  2. Download : Download full-size image
  相似文献   
5.
6.
BackgroundSevere acute pancreatitis (SAP) is associated with high morbidity and mortality. Bone marrow mesenchymal stem cells (BMSCs) have shown obvious protective effect on SAP. However, little is known about the underlying mechanism. The objective of this study is to unravel the role and regulatory mechanism of miR-181a-5p in BMSCs-mediated pancreatic repair.MethodsBMSCs were isolated from Sprague-Dawley rats and characterized by flow cytometry and Oil Red O staining. Sodium taurocholate- and caerulein-induced models were used as SAP models in vivo and in vitro, respectively. Pancreatic injury were evaluated by H&E and histopathological analysis, as well as by measuring levels of amylase, lipase and cytokines. qRT-PCR and western blotting were performed to detect the level of miR-181a-5p and the protein levels of PTEN/Akt, respectively. ELISA was conducted to detect the levels of TNF-α, IL-1β, IL-6, angiopoietin, IL-4, IL-10 and TGF-β1. The apoptotic rate of AR42 J cells was quantitated by concurrent staining with Annexin-V-FITC and PI.ResultsBMSCs significantly attenuated pancreatic injury in SAP rats by reducing inflammatory infiltration and necrosis, and this effect was abolished by CXCR4 agonist AMD3100. ADM3100 exhibited more severe pancreatic injury and decreased miR-181a-5p levels in the pancreas and serum compared to SAP group. Overexpression of miR-181a-5p in BMSCs (BMSCs-miR-181a-5p) markedly potentiated the protective effect of BMSCs by reducing histological damage and levels of amylase and lipase. Moreover, BMSCs-miR-181a-5p dramatically reduced levels of angiopoietin, TNF-α, IL-1β and IL-6, but induced the levels of IL-4 and IL-10. In caerulein-treated AR42 J cells, co-culturing of BMSCs-miR-181a-5p alleviated caerulein-induced increase of amylase and lipase, and apoptosis via PTEN/Akt/TGF-β1 signaling.ConclusionBMSCs alleviate SAP and reduce inflammatory responses and apoptosis by secreting miR-181a-5p to target PTEN/Akt/TGF-β1 signaling. Hence, BMSCs-miR-181a-5p could serve as potential therapeutic target for SAP.  相似文献   
7.
Cell swelling is now admitted as being a new principle of metabolic control but little is known about the energetics of cell swelling. We have studied the influence of hypo- or hyperosmolarity on both isolated hepatocytes and isolated rat liver mitochondria. Cytosolic hypoosmolarity on isolated hepatocytes induces an increase in matricial volume and does not affect the myxothiazol sensitive respiratory rate while the absolute value of the overall thermodynamic driving force over the electron transport chain increases. This points to an increase in kinetic control upstream the respiratory chain when cytosolic osmolarity is decreased. On isolated rat liver mitochondria incubated in hypoosmotic potassium chloride media, energetic parameters vary as in cells and oxidative phosphorylation efficiency is not affected. Cytosolic hyperosmolarity induced by sodium co-transported amino acids, per se, does not affect either matrix volume or energetic parameters. This is not the case in isolated rat liver mitochondria incubated in sucrose hyperosmotic medium. Indeed, in this medium, adenine nucleotide carrier is inhibited as the external osmolarity increases, which lowers the state 3 respiration close to state 4 level and consequently leads to a decrease in oxidative phosphorylation efficiency. When isolated rat liver mitochondria are incubated in KCl hyperosmotic medium, state 3 respiratory rate, matrix volume and membrane electrical potential vary as a function of time. Indeed, matrix volume is recovered in hyperosmotic KCl medium and this recovery is dependent on Pi-Kentry. State 3 respiratory rate increases and membrane electrical potential difference decreases during the first minutes of mitochondrial incubation until the attainment of the same value as in isoosmotic medium. This shows that matrix volume, flux and force are regulated as a function of time in KCl hyperosmotic medium. Under steady state, neither matrix volume nor energetic parameters are affected. Moreover, NaCl hyperosmotic medium allows matrix volume recovery but induces a decrease in state 3 respiratory flux. This indicates that potassium is necessary for both matrix volume and flux recovery in isolated mitochondria. We conclude that hypoosmotic medium induces an increase in kinetic control both upstream and on the respiratory chain and changes the oxidative phosphorylation response to forces. At steady state, hyperosmolarity, per se, has no effect on oxidative phosphorylation in either isolated hepatocytes or isolated mitochondria incubated in KCl medium. Therefore, potassium plays a key role in matrix volume, flux and force regulation.  相似文献   
8.
9.
10.
Electrospun composite scaffolds show high ability to be used in regenerative medicine and drug delivery, due to the nanofibrous structure and high surface area to volume ratio. In this study, we used nanofibrous scaffolds fabricated by chitosan (CS), poly(vinyl alcohol) (PVA), carbopol, and polycaprolactone using a dual electrospinning technique while curcumin (Cur) incorporated inside of the CS/PVA fibers. Scaffolds were fully characterized via scanning electron microscopy, water contact angle, tensile measurement, hydration, protein adsorption, and wrinkled tests. Furthermore, viability of the buccal fat pad-derived mesenchymal stem cells (BFP-MSCs) was also investigated using MTT assay for up to 14 days while cultured on these scaffolds. Cell cycle assay was also performed to more detailed evaluation of the stem cells growth when grown on scaffolds (with and without Cur) compared with the culture plate. Results demonstrated that Cur loaded nanofibrous scaffold had more suitable capability for water absorption and mechanical properties compared with the scaffold without Cur and it could also support the stem cells viability and proliferation. Cur release profile showed a decreasing effect on BFP-MSCs viability in the initial stage, but it showed a positive effect on stem cell viability in a long-term manner. In general, the results indicated that this nanofibrous scaffold has great potential as a delivery of the Cur and BFP-MSCs simultaneously, and so holds the promising potential for use in various regenerative medicine applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号